

SUMMARY

Motivation:

Overcoming this challenge is important, as it could cause sub-optimal wind farm layouts, thus further delay the cost-competiveness of this technology [1].

(Figure B).

predict more accurate pre-construction energy yields [2-3].

Research Challenge:

Unfortunately, often times RL wind and other atmospheric measurements across entire an hypothetical turbine's rotor-layer (~40-200m) are sparse, both spatially & temporally.

Therefore, during a pre-construction wind resource assessment, RL wind profiles are assumed to be logarithmic-like, using the power-law method to extrapolate surface or lower-height data. In reality, RL wind profiles may be very different; notably during the evolution of the Low-Level Jet (LLJ) phenomenon (Figure C).

Research Questions:

What are average RL wind profile shapes during the evolution of LLJ events?

DATA COLLECTION

2015 PECAN Measurement Campaign:

<u>Dates:</u> June 1st – July 15th 2015 Doppler wind lidar

Experiment set up with overlay of horizontal wind retrieval technique, a sector width of 35° and a radius of 460 m (Figure D).

Assessing the Impact of Atmospheric Stability on Vertical Wind Profile Evolution During PECAN Low-Level Jet Events

Christiana Sasser ¹*, Alexandra St. Pé ¹, Belay Demoz², Ruben Delgado² ¹University of Maryland, Baltimore County, Baltimore, MD 21250, USA, *Email: csas1@umbc.edu ²Joint Center for Earth Systems Technology, Baltimore, MD, 21250, USA

Maryland Energy Administration, NOAA-CREST, NSF funding PECAN (Award # 1503563). Special thanks to Ben Tucker from UMBC for his support. For more information 11 Clift of read "Wind Blant Preconstruction Energy Estimates: Current Practices and Opportunities." NREL (2016); [2] Wagner et al. 2011, "Accounting for the speed shear in wind turbine power performance measurement", Wind Energy 12 348–62; [3] Choukulkar et al. 2014., "A Calculations Using Data from the High Resolution Doppler Lidar", AMS conference paper

<u>Classifying Rotor-Layer Stability:</u>

$$\frac{g\Delta\theta_{v}\Delta z}{\theta_{v}(\Delta u^{2}+\Delta v^{2})}$$

 R_B method to assess stability only considers magnitude of RL wind speed change with height

g = gravity, $\Delta \theta_{..}$ = change in virtual potentia temperature across a layer of thickness Δz vertical depth), Δu and Δv are changes in wind components across same laye

Rotor-Layer Stability (RLS): $RLS = \sum_{i=1}^{24} (\Delta \theta_{vi})$

 $\Delta \theta_{n_i}$ = change in virtual potentia

temperature each measurement heigh *z_i* (i=1-24)

Rotor-Layer Wind & Stability Classification :

ind Type 0m) (lidar)	Rotor-Layer Stability Term (radiometer)	Hub-Height Wind Speed (~60m)	Hub-Height Wind Direction (~60m)	
Inflections	2.37	10.90	340.15	
Inflections	3.40	9.89	292.16	
Inflections				
everse	4.80	6.97	177.77	

(UTC)	RL Wind Type (5-150m)	Rotor-Layer Stability Term	Hub-Height Wind Speed (~72m)	Hub-Height Wind Direction (~72m)	
00	3	-1.49	9.9	175.6] л Л
80	6	2.21	10.3	168.4	
00	5	2.48	11.6	170.4	
80	5	2.38	11.5	165.4	
00	5	2.21	11.7	171.6	
Radiometer Delta VPT		P T 150	0 Type 3 Type 5		0

Delta Virtual Potential Temp (C)

• Compared to weak inflection types, lidar and radiometer results suggest strong inflection Types 3-6 are associated with higher stability on average (higher RLS terms), as well as slightly weaker hub-height winds and more westerly

• Classified radiosonde data demonstrates only strong inflection Types 3-6; however also with high RLS terms

• Delta VPT values, which comprise the RLS term, further elucidate the greatest change in VPT with height occurs at lower heights; suggesting the important role of the stable surface layer and atypical RL winds (Figure N & O)