Mixed layer height measurements from Doppler lidar using a composite method

T. A. Bonin^{1,2}, B. J. Carroll³, R. M. Hardesty^{1,2}, W. A. Brewer²

¹Cooperative Institute for Research in Environmental Sciences ²National Oceanic and Atmospheric Administration, Chemical Sciences Division ³Joint Center for Earth Systems Technology/Univ. of Maryland Baltimore County

INFLUX Doppler lidar deployment

- Halo Streamline lidar deployed on roof of Ivy Tech Building (4 stories above ground) in Aug 2013 until June 2015
- Lidar was upgraded at the end of 2015, and Halo Streamline XR was redeployed at same location in January 2016 to present
- Motivation: Measuring greenhouse gas emissions from city
 - Need wind profile and MH

Tower

Motivation for composite fuzzy-logic technique

- Backscatter alone is not always sufficient to determine mixing height, especially when residual layer is present
- Variance alone may lead to a high determination of the mixing height, especially when non-turbulent wavelike motions are present

Scanning strategy for INFLUX 20 minute repeating cycle

1) Detect gravity waves and other non-turbulent sub-meso motions

Use relation between HF w'² (T<1 min, f>0.017 Hz) to total w'² to differentiate turbulent and non-turbulent motions

- Detect gravity waves and other non-turbulent sub-meso 1) motions
- 2) Combine data from all useful scans using fuzzy logic:
 - σ_{vr}^2 from each VAD scan • σ_{μ}^2 , σ_{ν}^2 from shallow stares • σ_{w}^2 from vertical stares
- σ_{μ}^2 , σ_{ν}^2 from RHI scans

- Detect gravity waves and other non-turbulent sub-meso 1) motions
- 2) Combine data from all useful scans using fuzzy logic:
 - σ_{vr}^2 from each VAD scan • $\sigma_{\rm u}^2$, $\sigma_{\rm v}^2$ from shallow stares • $\sigma_{\rm w}^2$ from vertical stares
- σ_{μ}^2 , σ_{ν}^2 from RHI scans

- Detect gravity waves and other non-turbulent sub-meso 1) motions
- Combine data from all useful scans using fuzzy logic: 2)
 - σ_{vr}^2 from each VAD scan • σ_{μ}^2 , σ_{ν}^2 from shallow stares • σ_{w}^2 from vertical stares
- σ_{μ}^2 , σ_{ν}^2 from RHI scans
- 3) Identify a first guess for the top of the mixed layer $(z_{i,fa})$ based on fuzzy aggregation Fuzzy Logic Multi-Method PBL Membership

- Detect gravity waves and other non-turbulent sub-meso 1) motions
- 2) Combine data from all useful scans using fuzzy logic:
 - σ_{vr}^2 from each VAD scan σ_{u}^2 , σ_{v}^2 from RHI scans • σ_{u}^{2} , σ_{v}^{2} from shallow stares • σ_{w}^{2} from vertical stares
- 3) Identify a first guess for the top of the mixed layer $(z_i f_a)$ based on fuzzy aggregation
- 4) Fuzzify other indicators of mixing near $z_{i fa}$
 - Wind shear Large variance or gradients in RCI

- Detect gravity waves and other non-turbulent sub-meso 1) motions
- Combine data from all useful scans using fuzzy logic: 2)
 - σ_{vr}^2 from each VAD scan σ_{u}^2 , σ_{v}^2 from RHI scans • σ_{u}^{2} , σ_{v}^{2} from shallow stares • σ_{w}^{2} from vertical stares

- 4) Fuzzify other indicators of mixing near $z_{i fa}$
 - Wind shear • Large variance or gradients in SNR

- Detect gravity waves and other non-turbulent sub-meso 1) motions
- 2) Combine data from all useful scans using fuzzy logic:
 - σ_{vr}^2 from each VAD scan σ_{u}^2 , σ_{v}^2 from RHI scans • σ_{u}^{2} , σ_{v}^{2} from shallow stares • σ_{w}^{2} from vertical stares

- 4) Fuzzify other indicators of mixing near $z_{i fa}$
 - Wind shear • Large variance or gradients in SNR
- 5) Determine final estimate for top of mixed layer & uncertainty

- Detect gravity waves and other non-turbulent sub-meso 1) motions
- 2) Combine data from all useful scans using fuzzy logic:
 - σ_{vr}^2 from each VAD scan σ_{u}^2 , σ_{v}^2 from RHI scans • σ_{u}^{2} , σ_{v}^{2} from shallow stares • σ_{w}^{2} from vertical stares

- 4) Fuzzify other indicators of mixing near $z_{i fa}$ • Wind shear • Large variance or gradients in SNR
- 5) Determine final estimate for top of mixed layer & uncertainty
- 6) Flag the final estimate:
 - Is it raining?
 - Is the ML cloud-topped?
- Can we see the top of the ML?
- Is ML below minimum height?

Verification of MLH with aircraft observations 5/13/16 in Indianapolis

We thank Paul Shepson, Olivia Salmon, and the entire Atmospheric Chemistry group **Purdue University** for taking profiles over the lidar site and providing the independent observations for comparison

1.96

Annual Variation of MLH

Normalized Diurnal variability in MLH in Indianapolis

Morning transition

Evening transition

MLH evolution depends on mean wind speed

Morning transition

Evening transition

Summary

- A composite fuzzy logic algorithm has been developed and applied to different Doppler lidar systems to continuously detect the MLH at high temporal resolution (15-20 min)
 - Uses inputs of velocity variances (turbulence), backscatter intensity, and wind profiles from all scans
 - Gravity waves and other non-turbulent motions are identified and flagged for exclusion from analysis
- We have applied this algorithm to other Doppler lidars at in different locations (Oregon, California, Las Vegas, Alaska)
 - Algorithm adjusts to use whatever data it can get; do not need the scanning pattern discussed here
- Ongoing efforts to validate MHs through intercomparison with other instruments and NWP output