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Background:
The Power Equation 

& Manufacturer’s Power Curve

ρ = air density, A = rotor area
𝑪𝒑 = power coefficient - 𝐶𝑝(𝑈)

𝑼 = wind speed

𝐏𝐨𝐰𝐞𝐫𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆= 𝑪𝒑 ∗ 𝟎. 𝟓 ∗ ρ ∗ 𝐀 ∗ 𝑼𝟑

Available PowerEfficiency term

MPC Plots Power as a Function of 𝑼

𝑼 (m/s) 2



• Lewes, Delaware

• September-October 2016

• 2 MW Coastal Turbine (Gamesa)

• Remote Sensing: 
• Wind: Scanning Doppler wind lidar

• Windcube 200s (~3km)
• Temperature: 

• Microwave Radiometer 

Data Collection:
The VERTEX Campaign
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200s Lidar
PPI scan Elevation Angle 1
PPI scan Elevation Angle 2
PPI scan Elevation Angle 3
PPI scan Elevation Angle 4
OI Reconstructed Profile*

Plan Position Indicator (PPI) Scans: 

Choukulkar, A., Calhoun, R., Billings, B., and Doyle, J. D. A modified optimal interpolation technique for vector retrieval for coherent doppler lidar. IEEE Geoscience and 
Remote Sensing Letters, 9(6):1132–1136, 2012.

Data Collection:
Wind Profile Reconstruction
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Accuracy – how close output values are to the predicted value
Precision – how close output values are to each other

OBSERVATION:
Hub-height wind speed alone does not accurately and precisely predict power 

Motivation:
Accurate and Precise Power Curves

ഥ𝑼𝒉𝒖𝒃 (m/s)
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Wind Resource 
Uncertainty

Turbine Efficiency 
Uncertainty

Available Power 
Uncertainty

Turbine 
Power 

Prediction 
Uncertainty

𝐏𝐨𝐰𝐞𝐫𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆= 𝑪𝒑 ∗ 𝟎. 𝟓 ∗ ρ ∗ 𝐀 ∗ 𝑼𝟑

Method:
The Uncertainty Trifecta
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)𝐏𝐨𝐰𝐞𝐫𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆= 𝑪𝒑 ∗ 𝟎. 𝟓 ∗ ρ ∗ 𝐀 ∗ 𝑼𝟑

Included IEC standard for available power assessment*
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*IEC. Power performance measurements of electricity producing wind turbines edition 2, committee draft 2. Technical Report IEC 61400-12-1, International 
Electrotechnical Committee; 2017
Wagner R, Antoniou I, Pedersen SM, Courtney MS, Jørgensen HE. The influence of the wind speed profile on wind turbine performance measurements. Wind Energy. 
2009;12(4):348-362.

Previous Work:
Addressing Available Power Uncertainty
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Average Wind Speed (m/s)
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Vertical Wind Profile Types

Power Law

Linear

Strong Inflection

Inverted

*St Pé A, Sperling M, Brodie JF, Delgado R. Classifying rotor-layer wind to reduce offshore available power uncertainty. Wind Energy. 2018; accepted

Previous Work:
Addressing Wind Resource Uncertainty
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Research Questions:
Quantifying and Comparing Uncertainty

What is power prediction uncertainty when 
using hub-height wind speed?

What is the relative power prediction 
uncertainty reduction achieved by accounting 
for wind speeds throughout the rotor layer 
via Wagner REWS? 

Does the uncertainty of hub-height wind 
speed and REWS predictions vary during 
different classified profile types? If so, how?

Wind Speed
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REWS reduces all 3 errors measured

ഥ𝑼𝑯𝒖𝒃 & ഥ𝑼𝑹𝑬𝑾𝑺 Prediction Uncertainties

19.1% 17.2%

0.15 MW 0.14 MW

0.033MW0.034 MW

Results:
The Value of REWS
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Profile Type Power-Law Unclassified Strong 
Inflections

Inverted Linear

FVU 7.9% 10.3% 16.3% 31.9% 34.4%

𝑃𝐵𝑖𝑎𝑠 (MW) 68.6 126.1 143.2 157.1 135.5

𝑃𝑆𝑐𝑎𝑡𝑡𝑒𝑟 (MW) 30.8 60.1 45.1 87.8 84.0

Average Wind Speed (m/s)

H
ei

gh
t 

(m
)

Increasing Error and Uncertainty

Results:
Hub-Height Wind Speed Prediction

Uncertainty by Type
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55.8%

13.3% 12.1% 9.7% 9.0%

3.3%
1.4%

-0.1%
1.5%

-2.9%

Results:
Relative Value of REWS by Type
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Conclusions:

• Overall, ഥ𝑈𝑅𝐸𝑊𝑆 reduces 
power prediction 
uncertainty by 1.9%

ഥ𝑼𝑹𝑬𝑾𝑺 vs. ഥ𝑼𝒉𝒖𝒃

• Standard power-law profiles 
have the lowest ഥ𝑈ℎ𝑢𝑏
prediction uncertainty
(7.9%)

ഥ𝑼𝒉𝒖𝒃
uncertainty by 

classified profile 
type 

• Strong inflection types have 
the largest uncertainty 
reduction achieved by 
ഥ𝑈𝑅𝐸𝑊𝑆 (3.3%)

Value of 
ഥ𝑼𝑹𝑬𝑾𝑺 by 

classified profile 
type Wind Speed
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Future Work:
Current Research Questions

Improved 
Wind 
Power 

Predictions

Determining the 
effect of atmospheric 

stability on power 
prediction 

uncertainty 

Establishing a 
correlation between 

profile types and 
atmospheric stability

Using machine 
learning to 

individualize power 
prediction models in 
given local conditions
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Thank you for listening
For more information: https://lidar.umbc.edu/wind-energy/

Contact information: mersper1@umbc.edu, delgado@umbc.edu
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